Saturday, April 10, 2010

Model Multithreading

Dalam sub bab sebelumnya telah dibahas pengertian dari thread, keuntungannya, tingkatan atau levelnya seperti pengguna dan kernel. Maka dalam sub-bab ini pembahasan akan dilanjutkan dengan jenis-jenis thread tersebut dan contohnya baik pada Solaris mau pun Java.
Sistem-sistem yang ada sekarang sudah banyak yang bisa mendukung untuk kedua pengguna dan kernel thread, sehingga model-model multithreading-nya pun menjadi beragam. Implementasi multithreading yang umum akan kita bahas ada tiga, yaitu model many-to-one, one-to-one, dan many-to-many.
Gambar 2-18. Model Multithreading. Sumber: . . .


Model Many to One

Model many-to-one ini memetakan beberapa tingkatan pengguna thread hanya ke satu buah kernel thread. Managemen proses thread dilakukan oleh (di ruang) pengguna, sehingga menjadi efisien, tetapi apabila sebuah thread melakukan sebuah pemblokingan terhadap sistem pemanggilan, maka seluruh proses akan berhenti (blocked). Kelemahan dari model ini adalah multihreads tidak dapat berjalan atau bekerja secara paralel di dalam multiprosesor dikarenakan hanya satu thread saja yang bisa mengakses kernel dalam suatu waktu.
Gambar 2-19. Model Many to One. Sumber: . . .


Model One to One

Model one-to-one memetakan setiap thread pengguna ke dalam satu kernel thread. Hal ini membuat model one-to-one lebih sinkron daripada model many-to-one dengan mengizinkan thread lain untuk berjalan ketika suatu thread membuat pemblokingan terhadap sistem pemanggilan; hal ini juga mengizinkan multiple thread untuk berjalan secara parallel dalam multiprosesor. Kelemahan model ini adalah dalam pembuatan thread pengguna dibutuhkan pembuatan korespondensi thread pengguna. Karena dalam proses pembuatan kernel thread dapat mempengaruhi kinerja dari aplikasi maka kebanyakan dari implementasi model ini membatasi jumlah thread yang didukung oleh sistem. Model one-to-one diimplementasikan oleh Windows NT dan OS/2.
Gambar 2-20. Model One to One. Sumber: . . .


Model Many to Many

Beberapa tingkatan thread pengguna dapat menggunakan jumlah kernel thread yang lebih kecil atau sama dengan jumlah thread pengguna. Jumlah dari kernel thread dapat dispesifikasikan untuk beberapa aplikasi dan beberapa mesin (suatu aplikasi dapat dialokasikan lebih dari beberapa kernel thread dalam multiprosesor daripada dalam uniprosesor) dimana model many-to-one mengizinkan pengembang untuk membuat thread pengguna sebanyak mungkin, konkurensi tidak dapat tercapai karena hanya satu thread yang dapat dijadualkan oleh kernel dalam satu waktu. Model one-to-one mempunyai konkurensi yang lebih tinggi, tetapi pengembang harus hati-hati untuk tidak membuat terlalu banyak thread tanpa aplikasi dan dalam kasus tertentu mungkin jumlah thread yang dapat dibuat dibatasi.
Gambar 2-21. Model Many to Many. Sumber: . . .


Thread Dalam Solaris 2

Solaris 2 merupakan salah satu versi dari UNIX yang sampai dengan tahun 1992 hanya masih mendukung proses berat (heavyweight) dengan kontrol oleh satu buah thread. Tetapi sekarang Solaris 2 sudah berubah menjadi sistem operasi yang modern yang mendukung threads di dalam level kernel dan pengguna, multiprosesor simetrik (SMP), dan penjadualan real-time.
Threads di dalam Solaris 2 sudah dilengkapi dengan library mengenai API-API untuk pembuatan dan managemen thread. Di dalam Solaris 2 terdapat juga level tengah thread. Di antara level pengguna dan level kernel thread terdapat proses ringan/ lightweight (LWP). Setiap proses yang ada setidaknya mengandung minimal satu buah LWP. Library thread memasangkan beberapa thread level pengguna ke ruang LWP-LWP untuk diproses, dan hanya satu user-level thread yang sedang terpasang ke suatu LWP yang bisa berjalan. Sisanya bisa diblok mau pun menunggu untuk LWP yang bisa dijalankan.
Operasi-operasi di kernel seluruhnya dieksekusi oleh kernel-level threads yang standar. Terdapat satu kernel-level thread untuk tiap LWP, tetapi ada juga beberapa kernel-level threads yang berjalan di bagian kernel tanpa diasosiasikan dengan suatu LWP (misalnya thread untuk pengalokasian disk). Thread kernel-level merupakan satu-satunya objek yang dijadualkan ke dalam sistem (lihat bagian berjudul Penjadual CPU mengenai scheduling). Solaris menggunakan model many-to-many.
Thread level pengguna dalam Solaris bisa berjenis bound mau pun unbound. Suatu bound thread level pengguna secara permanen terpasang ke suatu LWP. Jadi hanya thread tersebut yang bekerja di LWP, dan dengan suatu permintaan, LWP tersebut bisa diteruskan ke suatu prosesor. Dalam beberapa situasi yang membutuhkan waktu respon yang cepat (seperti aplikasi real-time), mengikat suatu thread sangatlah berguna. Suatu thread yang unbound tidak secara permanen terpasang ke suatu LWP. Semua threads unbound dipasangkan (secara multiplex) ke dalam suatu ruang yang berisi LWP-LWP yang tersedia untuk aplikasi. Secara default thread-thread yang ada adalah unbound.
Misalnya sistem sedang beroperasi, setiap proses bisa mempunyai threads level pengguna yang banyak. User-user level thread ini bisa dijadual dan diganti di antara LWP-LWP-nya oleh thread library tanpa intervensi dari kernel. User-level threads sangatlah efisien karena tidak dibutuhkan bantuan kerja kernel oleh thread library untuk menukar dari satu user-level thread ke yang lain.
Setiap LWP terpasang dengan tepat satu kernel-level thread, dimana setiap user-level thread tidak tergantung dari kernel. Suatu proses mungkin mempunyai banyak LWP, tetapi mereka hanya dibutuhkan ketika thread harus berkomunikasi dengan kernel. Misalnya, suatu LWP akan dibutuhkan untuk setiap thread yang bloknya konkuren di sistem pemanggilan. Anggap ada lima buah pembacaan berkas yang muncul. Jadi dibutuhkan lima LWP, karena semuanya mungkin mengunggu untuk penyelesaian proses I/O di kernel. Jika suatu proses hanya mempunyai empat LWP, maka permintaan yang kelima harus menunggu unuk salah satu LWP kembali dari kernel. Menambah LWP yang keenam akan sia-sia jika hanya terdapat tempat untuk lima proses.
Kernel-kernel threads dijadual oleh penjadual kernel dan dieksekusi di CPU atau CPU-CPU dalam sistemnya. Jika suatu kernel thread memblok (misalnya karena menunggu penyelesaian suatu proses I/O), prosesor akan bebas untuk menjalankan kernel thread yang lain. Jika thread yang sedang terblok sedang menjalankan suatu bagian dari LWP, maka LWP tersebut akan ikut terblok. Di tingkat yang lebih atas lagi, user-level thread yang sedang terpasang ke LWP tersebut akan terblok juga. Jika suatu proses mempunyai lebih dari satu LWP, maka LWP lain bisa dijadual oleh kernel.
Para pengembang menggunakan struktur-struktur data sebagai berikut untuk mengimplementasikan thread-thread dalam Solaris 2:
  • Suatu user-level thread mempunyai thread ID, himpunan register (mencakup suatu PC dan stack pointer), stack dan prioritas (digunakan oleh library untuk penjadualan). Semua struktur data tersebut berasal dari ruang user.
  • Suatu LWP mempunyai suatu himpunan register untuk user-level thread yang ia jalankan, juga memori dan informasi pencatatan. LWP merupakan suatu struktur data dari kernel, dan bertempat pada ruang kernel.
  • Suatu kernel thread hanya mempunyai struktur data yang kecil dan sebuah stack. Struktur datanya melingkupi copy dari kernel-kernel registers, suatu pointer yang menunjuk ke LWP yang terpasang dengannya, dan informasi tentang prioritas dan penjadualan.
Setiap proses dalam Solaris 2 mempunyai banyak informasi yang terdapat di process control block (PCB). Secara umum, suatu proses di Solaris mempunyai suatu proses id (PID), peta memori, daftar dari berkas yang terbuka, prioritas, dan pointer yang menunjuk ke daftar LWP yang terasosiasi kedalam proses.
Gambar 2-22. Thread Solaris dan Java. Sumber: . . .


Thread Java

Seperti yang telah kita lihat, thread didukung selain oleh sistem operasi juga oleh paket library thread. Sebagai contoh, Win32 library mempunyai API untuk multithreading aplikasi Windows, dan Pthreads mempunyai fungsi manajmen thread untuk sistem POSIX-compliant. Java adalah unik dalam mendukung tingkatan bahasa untuk membuat dan managemen thread.
Semua program java mempunyai paling sedikit satu kontrol thread. Bahkan program java yang sederhana mempunyai hanya satu main() method yang berjalan dalam thread tunggal dalam JVM. Java menyediakan perintah-perintah yang mendukung pengembang untuk membuat dan memanipulasi kontrol thread pada program.
Satu cara untuk membuat thread secara eksplisit adalah dengan membuat kelas baru yang diturunkan dari kelas thread, dan menimpa run() method dari kelas Thread tersebut.
Object yang diturunkan dari kelas tersebut akan menjalankan sebagian thread control dalam JVM. Bagaimana pun, membuat suatu objek yang diturunkan dari kelas Thread tidak secara spesifik membuat thread baru, tetapi start() method lah yang sebenarnya membuat thread baru.
Memanggil start() method untuk objek baru mengalokasikan memori dan menginisialisasikan thread baru dalam JVM dan memanggil run() method membuat thread pantas untuk dijalankan oleh JVM. (Catatan: jangan pernah memanggil run() method secara langsung. Panggil start() method dan ini secara langsung akan memanggil run() method).
Ketika program ini dijalankan, dua thread akan dibuat oleh JVM. Yang pertama dibuat adalah thread yang berasosiasi dengan aplikasi-thread tersebut mulai dieksekusi pada main() method. Thread kedua adalah runner thread secara ekspilisit dibuat dengan start() method. Runner thread memulai eksekusinya dengan run() method.
Pilihan lain untuk membuat sebuah thread yang terpisah adalah dengan mendefinisikan suatu kelas yang mengimplementasikan runnable interface. Runnable interface tersebut didefinisikan sebagai berikut:
Gambar 2-23. Runnable. Sumber: . . .
Public interface Runnable
{
   Public abstract void run();
}


Sehingga, ketika sebuah kelas diimplementasikan dengan runnable, kelas tersebut harus mendefinisikan run() method. Kelas thread yang berfungsi untuk mendefinisikan static dan instance method, juga mengimplementasikan runnable interface. Itu menerangkan bahwa mengapa sebuah kelas diturunkan dari thread harus mendefinisikan run() method.
Implementasi dari runnable interface sama dengan mengekstend kelas thread, satu-satunya kemungkinan untuk mengganti "extends thread" dengan "implements runnable".
Gambar 2-24. Class Worker2. Sumber: . . .
Class worker2 implements Runnable
{
   Public void run() {
      System. Out. Println ("I am a worker thread. ");
   }
}


Membuat sebuah thread dari kelas yang diimplementasikan oleh runnable berbeda dengan membuat thread dari kelas yang mengekstend thread. Selama kelas baru tersebut tidak mengekstend thread, dia tidak mempunyai akses ke objek static atau instance method — seperti start() method — dari kelas thread. Bagaimana pun, sebuah objek dari kelas thread adalah tetap dibutuhkan, karena yang membuat sebuah thread baru dari kontrol adalah start() method.
Di kelas kedua, sebuah objek thread baru dibuat melalui runnable objek dalam konstruktornya. Ketika thread dibuat oleh start() method, thread baru mulai dieksekusi pada run() method dari runnable objek. Kedua method dari pembuatan thread tersebut adalah cara yang paling sering digunakan.

Managemen Thread

Java menyediakan beberapa fasilitas API untuk mengatur thread — thread, diantaranya adalah:
  • Suspend(): berfungsi untuk menunda eksekusi dari thread yang sedang berjalan.
  • Sleep(): berfungsi untuk menempatkan thread yang sedang berjalan untuk tidur dalam beberapa waktu.
  • Resume(): hasil eksekusi dari thread yang sedang ditunda.
  • Stop(): menghentikan eksekusi dari sebuah thread; sekali thread telah dihentikan dia tidak akan memulainya lagi.
Setiap method yang berbeda untuk mengontrol keadaan dari thread mungkin akan berguna dalam situasi tertentu. Sebagai contoh: Applets adalah contoh alami untuk multithreading karena mereka biasanya memiliki grafik, animasi, dan audio — semuanya sangat baik untuk mengatur berbagai thread yang terpisah. Bagaimana pun, itu tidak akan mungkin bagi sebuah applet untuk berjalan ketika dia sedang tidak ditampilkan, jika applet sedang menjalankan CPU secara intensif. Sebuah cara untuk menangani situasi ini adalah dengan menjalankan applet sebagai thread terpisah dari kontrol, menunda thread ketika applet sedang tidak ditampilkan dan melaporkannya ketika applet ditampilkan kembali.
Anda dapat melakukannya dengan mencatat bahwa start() method dari sebuah applet dipanggil ketika applet tersebut pertama kali ditampilkan. Apabila user meninggalkan halaman web atau applet keluar dari tampilan, maka method stop() pada applet dipanggil (ini merupakan suatu keuntungan karena start() dan stop() keduanya terasosiasi dengan thread dan applet). Jika user kembali ke halaman web applet, kemudian start() method dipanggil kembali. Destroy() method dari sebuah applet dipanggil ketika applet tersebut dipindahkan dari cache-nya browser. Ini memungkinkan untuk mencegah sebuah applet berjalan ketika applet tersebut sedang tidak ditampilkan pada sebuah web browser dengan menggunakan stop() method dari applet yang ditunda dan melaporkan eksekusi tersebut pada thread di applet start() method.

Keadaan Thread

Sebuah thread java dapat menjadi satu dari 4 kemungkinan keadaan:
  1. new: sebuah thread pada keadaan ini ada ketika objek dari thread tersebut dibuat.
  2. runnable: memanggil start() method untuk mengalokasikan memori bagi thread baru dalam JVM dan memanggil run() method untuk membuat objek.
  3. block: sebuah thread akan diblok jika menampilkan sebuah kalimat pengeblokan. Contohnya: sleep() atau suspend().
  4. dead: sebuah thread dipindahkan ke keadaan dead ketika run() method berhenti atau ketika stop() method dipanggil.
Gambar 2-25. Keadaan Thread. Sumber: . . .



Thread dan JVM

Pada penambahannya ke java program mengandung beberapa thread yang berbeda dari kontrol, disini ada beberapa thead yang sedang berjalan secara tidak sinkron untuk kepentingan dari penanganan sistem tingkatan JVM seperti managemen memori dan grafik kontrol. Garbage Collector mengevaluasi objek ketika JVM untuk dilihat ketika mereka sedang digunakan. Jika tidak, maka itu akan kembali ke memori dalam sistem.

JVM dan Sistem Operasi

Secara tipikal implementasi dari JVM adalah pada bagian atas terdapat host sistem operasi, pengaturan ini mengizinkan JVM untuk menyembunyikan detail implementasi dari sistem operasi dan menyediakan sebuah kekonsistenan, lingkungan yang abstrak tersebut mengizinkan program-program java untuk beroprasi pada berbagai sistem operasi yang mendukung sebuah JVM. Spesifikasi bagi JVM tidak mengidentifikasi bagaimana java thread dipetakan ke dalam sistem operasi.

Contoh Solusi Multithreaded

Pada bagian ini, kita memperkenalkan sebuah solusi multithreaded secara lengkap kepada masalah produser konsumer yang menggunakan penyampaian pesan. Kelas server pertama kali membuat sebuah mailbox untuk mengumpulkan pesan, dengan menggunakan kelas message queue kemudian dibuat produser dan konsumer threads secara terpisah dan setiap thread mereferensi ke dalam mailbox bersama. Thread produser secara bergantian antara tidur untuk sementara, memproduksi item, dan memasukkan item ke dalam mailbox. Konsumer bergantian antara tidur dan mengambil suatu item dari mailbox dan mengkonsumsinya. Karena receive() method dari kelas message queue adalah tanpa pengeblokan, konsumer harus mencek apakah pesan yang diambilnya tersebut adalah nol.

Thread

Thread, atau kadang-kadang disebut proses ringan (lightweight), adalah unit dasar dari utilisasi CPU. Di dalamnya terdapat ID thread, program counter, register, dan stack. Dan saling berbagi dengan thread lain dalam proses yang sama.
Gambar 2-16. Thread. Sumber: . . .


Konsep Dasar

Secara informal, proses adalah program yang sedang dieksekusi. Ada dua jenis proses, proses berat (heavyweight) atau biasa dikenal dengan proses tradisional, dan proses ringan atau kadang disebut thread.
Thread saling berbagi bagian program, bagian data dan sumber daya sistem operasi dengan thread lain yang mengacu pada proses yang sama. Thread terdiri atas ID thread, program counter, himpunan register, dan stack. Dengan banyak kontrol thread proses dapat melakukan lebih dari satu pekerjaan pada waktu yang sama.

Keuntungan


  1. Tanggap: Multithreading mengizinkan program untuk berjalan terus walau pun pada bagian program tersebut di block atau sedang dalam keadaan menjalankan operasi yang lama/ panjang. Sebagai contoh, multithread web browser dapat mengizinkan pengguna berinteraksi dengan suatu thread ketika suatu gambar sedang diload oleh thread yang lain.
  2. Pembagian sumber daya: Secara default, thread membagi memori dan sumber daya dari proses. Keuntungan dari pembagian kode adalah aplikasi mempunyai perbedaan aktifitas thread dengan alokasi memori yang sama.
  3. Ekonomis: Mengalokasikan memori dan sumber daya untuk membuat proses adalah sangat mahal. Alternatifnya, karena thread membagi sumber daya dari proses, ini lebih ekonomis untuk membuat threads.
  4. Pemberdayaan arsitektur multiprosesor: Keuntungann dari multithreading dapat ditingkatkan dengan arsitektur multiprosesor, dimana setiap thread dapat jalan secara parallel pada prosesor yang berbeda. Pada arsitektur prosesor tunggal, CPU biasanya berpindah-pindah antara setiap thread dengan cepat, sehingga terdapat ilusi paralelisme, tetapi pada kenyataannya hanya satu thread yang berjalan di setiap waktu.

User Threads

Gambar 2-17. User dan Kernel Thread. Sumber: . . .


User thread didukung oleh kernel dan diimplementasikan oleh thread library ditingkat pengguna. Library mendukung untuk pembentukan thread, penjadualan, dan managemen yang tidak didukung oleh kernel.

Kernel Threads

Kernel thread didukung secara langsung oleh sistem operasi: pembentukan thread, penjadualan, dan managemen dilakukan oleh kernel dalam ruang kernel. Karena managemen thread telah dilakukan oleh sistem operasi, kernel thread biasanya lebih lambat untuk membuat dan mengelola daripada pengguna thread. Bagaimana pun, selama kernel mengelola thread, jika suatu thread di block tehadap sistem pemanggilan, kernel dapat menjadualkan thread yang lain dalam aplikasi untuk dieksekusi. Juga, di dalam lingkungan multiprosesor, kernel dapat menjadualkan thread dalam prosesor yang berbeda. Windows NT, Solaris, dan Digital UNIX adalah sistem operasi yang mendukung kernel thread.

Operasi-Operasi Pada Proses

Proses dalam sistem dapat dieksekusi secara bersama-sama, proses tersebut harus dibuat dan dihapus secara dinamis. Maka, sistem operasi harus menyediakan suatu mekanisme umtuk pembuatan proses dan terminasi proses.
Gambar 2-9. Operasi pada Proses. Sumber: . . .

Pembuatan Proses

Suatu proses dapat membuat beberapa proses baru, melalui sistem pemanggilan pembuatan proses, selama jalur eksekusi. Pembuatan proses dinamakan induk proses, sebagaimana proses baru di sebut anak dari proses tersbut. Tiap proses baru tersebut dapat membuat proses lainnya, membentuk suatu pohon proses (lihat Gambar 2-7).
Secara umum, suatu proses akan memerlukan sumber tertentu (waktu CPU, memori, berkas, perangkat I/O) untuk menyelesaikan tugasnya. Ketika suatu proses membuat sebuah subproses, sehingga subproses dapat mampu untuk memperoleh sumbernya secara langsung dari sistem operasi. Induk mungkin harus membatasi sumber diantara anaknya, atau induk dapat berbagi sebagian sumber (seperti memori berkas) diantara beberapa dari anaknya. Membatasi suatu anak proses menjadi subset sumber daya induknya mencegah proses apa pun dari pengisian sistem yang telalu banyak dengan menciptakan terlalu banyak subproses.
Sebagai tambahan pada berbagai sumber fisik dan logis bahwa suatu proses diperoleh ketika telah dibuat, data pemula (masukan) dapat turut lewat oleh induk proses sampai anak proses. Sebagai contoh, anggap suatu proses yang fungsinya untuk menunjukkan status sebuah berkas, katakan F1, pada layar terminal. Ketika dibuat, akan menjadi sebagai sebuah masukan dari proses induknya, nama dari berkas F1, dan akan mengeksekusi menggunakan kumpulan data tersebut untuk memperoleh informasi yang diinginkan. Proses tersebut juga mendapat nama dari perangkat luar. Sebagian sistem operasi melewati sumber-sumber ke anak proses. Pada sistem tersebut, proses baru bisa mendapat dua berkas terbuka yang baru, F1 dan perangkat terminal dan hanya perlu untuk mentransfer data antara kedua berkas tersebut.
Ketika suatu proses membuat proses baru, dua kemungkinan ada dalam term eksekusi:

  1. Induk terus menerus untuk mengeksekusi secara bersama-sama dengan anaknya.
  2. Induk menunggu sampai sebagian dari anaknya telah diakhiri/terminasi.
Juga ada dua kemungkinan dalam term dari address space pada proses baru:
  1. Anak proses adalah duplikat dari induk proses.
  2. Anak proses memiliki program yang terisikan didalamnya.
Untuk mengilustrasikan implementasi yang berbeda ini, mari kita mempelajari sistem operasi UNIX. Dalam UNIX, tiap proses diidentifikasi oleh pengidentifikasi proses, yang merupakan integer yang unik. Proses baru dibuat oleh sistem pemanggilan fork system call. Proses baru tersebut terdiri dari sebuah copy ruang alamat dari proses aslinya (original). Mekanisme tersebut memungkinkan induk proses untuk berkomunikasi dengan mudah dengan anak proses. Kedua proses (induk dan anak) meneruskan eksekusi pada instruksi setelah fork dengan satu perbedaan: Kode kembali untuk fork adalah nol untuk proses baru (anak), sebagaimana proses pengidentifikasi non nol (non zero) dari anak dikembalikan kepada induk.
Umumnya, sistem pemanggilan execlp digunakan setelah sistem pemanggilan fork. Oleh satu dari dua proses untuk menggantikan proses ruang memori dengan program baru. Sistem pemanggilan execlp mengisi suatu berkas binary kedalam memori (menghancurkan gambar memori pada program yang berisikan sistem pemanggilan execlp) dan memulai eksekusinya. Dengan cara ini, kedua proses mampu untuk berkomunikasi, dan lalu untuk pergi ke arah yang berbeda. Induk lalu dapat membuat anak yang lebh banyak atau jika induk tidak punya hal lain untuk dilakukan ketika anak bekerja, induk dapat mengeluarkan sistem pemanggilan wait untuk tidak menggerakkan dirinya sendiri pada suatu antrian yang siap sampai anak berhenti. Program C ditunjukkan pada Gambar 2-10 mengilustrasikan sistem pemanggilan pada UNIX yang sebelumnya dijelaskan. Induk membuat anak proses menggunakan sistem pemanggilan fork(). Kini kita mempunyai dua proses yang berbeda yang menjalankan sebuah copy pada program yang sama. Nilai dari pid untuk anak proses adalah nol (zero): maka untuk induk adalah nilai integer yang lebih besar dari nol. Anak proses meletakkan ruang alamatnya dengan UNIX command /bin/ls (digunakan untuk mendapatkan pendaftaran directory) menggunakan sistem pemanggilan execlp(). Ketika anak proses selesai, induk proses menyimpulkan dari pemanggilan untuk wait() dimana induk proses menyelesaikannya dengan menggunakan sistem pemanggilan exit().
Secara kontras, sistem operasi DEC VMS membuat sebuah proses baru dengan mengisi program tertentu kedalam proses tersebut, dan memulai pekerjaannya. Sistem operasi Microsoft Windows NT mendukung kedua model: Ruang alamat induk proses dapat di duplikasi, atau induk dapat menspesifikasi nama dari sebuah program untuk sistem operasi untuk diisikan kedalam ruang alamat pada proses baru.

Terminasi Proses

Sebuah proses berakhir ketika proses tersebut selesai mengeksekusi pernyataan akhirnya dan meminta sistem operasi untuk menghapusnya dengan menggunakan sistem pemanggilan exit. Pada titik itu, proses tersebut dapat mengembalikan data (keluaran) pada induk prosesnya (melalui sistem pemanggilan wait) Seluruh sumber-sumber dari proses-termasuk memori fisik dan virtual, membuka berkas, dan penyimpanan I/O di tempatkan kembali oleh sistem operasi.
Ada situasi tambahan tertentu ketika terminasi terjadi. Sebuah proses dapat menyebabkan terminasi dari proses lain melalui sistem pemanggilan yang tepat (contoh abort). Biasanya, sistem seperti itu dapat dipanggil hanya oleh induk proses tersebut yang akan diterminasi. Bila tidak, pengguna dapat secara sewenang-wenang membunuh job antara satu sama lain. Catat bahwa induk perlu tahu identitas dari anaknya. Maka, ketika satu proses membuat proses baru, identitas dari proses yang baru diberikan kepada induknya.
Induk dapat menterminasi/ mengakhiri satu dari anaknya untuk beberapa alasan, seperti:
  • Anak telah melampaui kegunaannya atas sebagaian sumber yang telah diperuntukkan untuknya.
  • Pekerjaan yang ditugaskan kepada anak telah keluar, dan sistem operasi tidak memeperbolehkan sebuah anak untuk meneruskan jika induknya berakhir.
Untuk menentukan kasus pertama, induk harus memiliki mekanisme untuk memeriksa status anaknya. Banyak sistem, termasuk VMS, tidak memperbolehkan sebuah anak untuk ada jika induknya telah berakhir. Dalam sistem seperti ini, jika suatu proses berakhir (walau secara normal atau tidak normal), maka seluruh anaknya juga harus diterminasi. Fenomena ini, mengacu pada terminasi secara cascading, yang normalnya dimulai oleh sistem operasi.
Untuk mengilustrasikan proses eksekusi dan proses terminasi, kita menganggap bahwa, dalam UNIX, kami dapat mengakhiri suatu proses dengan sistem pemanggilan exit; proses induknya dapat menunggu untuk terminasi anak proses dengan menggunakan sistem pemanggilan wait. Sistem pemanggilan wait kembali ke pengidentifikasi proses dari anak yang telah diterminasi, maka induk dapat memberitahu kemungkinanan anak mana yang telah diterminasi. Jika induk menterminasi. Maka, anaknya masih punya sebuah induk untuk mengumpulkan status mereka dan mengumpulkan statistik eksekusinya.

Proses

Satu selingan pada diskusi kita mengenai sistem operasi yaitu bahwa ada sebuah pertanyaan mengenai apa untuk menyebut semua aktivitas CPU. Sistem batch mengeksekusi jobs, sebagaimana suatu sistem time-shared telah menggunakan program pengguna, atau tugas-tugas/ pekerjaan-pekerjaan. Bahkan pada sistem tunggal, seperti Microsoft Windows dan Macintosh OS, seorang pengguna mampu untuk menjalankan beberapa program pada saat yang sama: sebuah Word Processor, Web Browser, dan paket e-mail. Bahkan jika pengguna dapat melakukan hanya satu program pada satu waktu, sistem operasi perlu untuk mendukung aktivitas program internalnya sendiri, seperti managemen memori. Dalam banyak hal, seluruh aktivitas ini adalah serupa, maka kita menyebut seluruh program itu proses-proses (processes).
Istilah job dan proses digunakan hampir dapat dipertukarkan pada tulisan ini. Walau kami pribadi lebih mneyukai istilah proses, banyak teori dan terminologi sistem-operasi dikembangkan selama suatu waktu ketika aktivitas utama sistem operasi adalah job processing. Akan menyesatkan untuk menghindari penggunaan istilah umum yang telah diterima bahwa memasukkn kata job (seperti penjadualan job) hanya karena proses memiliki job pengganti/ pendahulu.

Konsep Dasar dan Definisi Proses

Secara informal; proses adalah program dalam eksekusi. Suatu proses adalah lebih dari kode program, dimana kadang kala dikenal sebagai bagian tulisan. Proses juga termasuk aktivitas yang sedang terjadi, sebagaimana digambarkan oleh nilai pada program counter dan isi dari daftar prosesor/ processor's register. Suatu proses umumnya juga termasuk process stack, yang berisikan data temporer (seperti parameter metoda, address yang kembali, dan variabel lokal) dan sebuah data section, yang berisikan variabel global.
Kami tekankan bahwa program itu sendiri bukanlah sebuah proses; suatu program adalah satu entitas pasif; seperti isi dari sebuah berkas yang disimpan didalam disket, sebagaimana sebuah proses dalam suatu entitas aktif, dengan sebuah program counter yang mengkhususkan pada instruksi selanjutnya untuk dijalankan dan seperangkat sumber daya/ resource yang berkenaan dengannya.
Walau dua proses dapat dihubungkan dengan program yang sama, program tersebut dianggap dua urutan eksekusi yang berbeda. Sebagai contoh, beberapa pengguna dapat menjalankan copy yang berbeda pada mail program, atau pengguna yang sama dapat meminta banyak copy dari program editor. Tiap-tiap proses ini adakah proses yang berbeda dan walau bagian tulisan-text adalah sama, data section bervariasi. Juga adalah umum untuk memiliki proses yang menghasilkan banyak proses begitu ia bekerja. Kami mendiskusikan masalah tersebut pada bagian berjudul Hubungan Antara Proses.

Keadaan Proses

Sebagaimana proses bekerja, maka proses tersebut merubah state (keadaan statis/ asal). Status dari sebuah proses didefinisikan dalam bagian oleh aktivitas yang ada dari proses tersebut. Tiap proses mungkin adalah satu dari keadaan berikut ini:

  • New: Proses sedang dikerjakan/ dibuat.
  • Running: Instruksi sedang dikerjakan.
  • Waiting: Proses sedang menunggu sejumlah kejadian untuk terjadi (seperti sebuah penyelesaian I/O atau penerimaan sebuah tanda/ signal).
  • Ready: Proses sedang menunggu untuk ditugaskan pada sebuah prosesor.
  • Terminated: Proses telah selsesai melaksanakan tugasnya/ mengeksekusi.
Nama-nama tersebut adalah arbitrer/ berdasar opini, istilah tersebut bervariasi disepanjang sistem operasi. Keadaan yang mereka gambarkan ditemukan pada seluruh sistem. Namun, sistem operasi tertentu juga lebih baik menggambarkan keadaan/ status proses. Adalah penting untuk menyadari bahwa hanya satu proses dapat berjalan pada prosesor mana pun pada waktu kapan pun. Namun, banyak proses yang dapat ready atau waiting. Keadaan diagram yang berkaitan dangan keadaan tersebut dijelaskan pada Gambar 2-1.
Gambar 2-1. Keadaan Proses. Sumber: . . .

Process Control Block

Tiap proses digambarkan dalam sistem operasi oleh sebuah process control block (PCB) - juga disebut sebuah control block. Sebuah PCB ditunjukkan dalam Gambar 2-2. PCB berisikan banyak bagian dari informasi yang berhubungan dengan sebuah proses yang spesifik, termasuk ini:
  • Keadaan proses: Keadaan mungkin, new, ready, running, waiting, halted, dan juga banyak lagi.
  • Program counter: Counter mengindikasikan address dari perintah selanjutnya untuk dijalankan untuk proses ini.
  • CPU register: Register bervariasi dalam jumlah dan jenis, tergantung pada rancangan komputer. Register tersebut termasuk accumulator, index register, stack pointer, general-puposes register, ditambah code information pada kondisi apa pun. Besertaan dengan program counter, keadaan/ status informasi harus disimpan ketika gangguan terjadi, untuk memungkinkan proses tersebut berjalan/ bekerja dengan benar setelahnya (lihat Gambar 2-3).
  • Informasi managemen memori: Informasi ini dapat termasuk suatu informasi sebagai nilai dari dasar dan batas register, tabel page/ halaman, atau tabel segmen tergantung pada sistem memori yang digunakan oleh sistem operasi .
  • Informasi pencatatan: Informasi ini termasuk jumlah dari CPU dan waktu riil yang digunakan, batas waktu, jumlah akun, jumlah job atau proses, dan banyak lagi.
  • Informasi status I/O: Informasi termasuk daftar dari perangkat I/O yang di gunakan pada proses ini, suatu daftar open berkas dan banyak lagi.
  • PCB hanya berfungsi sebagai tempat menyimpan/ gudang untuk informasi apa pun yang dapat bervariasi dari prose ke proses.
Gambar 2-2. Process Control Block. Sumber: . . .
 Gambar 2-3. CPU Register. Sumber: . . .


MICROKERNEL

Mikrokernel merupakan modul inti yang meyediakan beragam mekanisme yang dibutuhkan untuk mengembangkan sebuah sistem operasi, seperti halnya manajemen pengalamatan ruang tingkat rendah, manajemen thread, dan komunikasi antar proses. Dalam implementasinya mikrokernel merupakan satu-satunya perangkat lunak yang berjalan dengan tingkat kewenangan tertinggi (umumnya disebut sebagai modus supervisor atau modus kernel) dari serangkaian level kewenangan yang tersedia pada perangkat kerasnya. Layanan yang disediakan oleh sebuah sistem operasi beberapa diantaranya adalah device driver, protokol jaringan, sistem berkas, dan kode antarmuka pengguna yang berada dalam ruang pengguna.
Karena sebuah mikrokernal harus dapat meletakkan layanan-layanan sistem operasi pada level teratas, fungsionalitas yang harus dimiliki oleh mikrokernel setidaknya melingkupi:
  • Mekanisme pengaturan pengalamatan ruang, — dibutuhkan untuk mengatur proteksi ingatan.
  • Mekanisme eksekusi secara abstrak untuk mengatur alokasi CPU — biasanya adalah thread atau pengaktifan penjadual; dan
  • Komunikasi antarproses — dibutuhkan untuk menyediakan mekanisme pemanggilan peladen yang berjalan pada alamat ruang spesifik.
Hal terpenting yang harus dimiliki oleh sebuah mikrokernel adalah keberadaan mekanisme Komunikasi antarproses yang handal, dan disain pengatur ingatan virtual yang memungkinkan manajemen ingatan dan melakukan pertukaran alamat (swapping) secara dengan aman. Selanjutnya, karena pada akhirnya semua layanan sistem operasi dipanggil oleh program yang berjalan pada modus user membuat tingkat efisiensi mekanisme komunikasi antar program yang terdapat pada sebuah mikrokernel menjadi sangat penting.
Penjelasan tentang macam KERNEL :
Beberapa sistem operasi yang menggunakan microkernel:
  • IBM AIX, sebuah versi UNIX dari IBM
  • Amoeba, sebuah kernel yang dikembangkan untuk tujuan edukasi
  • Kernel Mach, yang digunakan di dalam sistem operasi GNU/Hurd, NexTSTEP, OPENSTEP, dan Mac OS/X
  • Minix, kernel yang dikembangkan oleh Andrew Tanenbaum untuk tujuan edukasi
  • Symbian OS, sebuah sistem operasi yang populer digunakan pada hand phone, handheld device, embedded device, dan PDA Phone.